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Back2round

The purpose of this Grant is to investigate the possibilities of using hp-time finite elements to

solve problems of rotorcraft trim and periodic response. Although conventional time-marching and Fourier
methods have been somewhat successful, they do not always converge. Thus, methodologies need to be

studied. The class of hp methods in time has the advantage that it is applicable even to unstable systems

and easily converges on discontinuities in the solution.

Personnel

During the duration of this Grant, the Principal Investigator (Dr. David Peters) spend 0.9 man-
months of effort; and Graduate Research Assistants Ay Su, Lin-Jin Hou, and Yi-Ren Wang spent 2.57,

1.00, and 0.75 man-months, respectively. The work of Mr. Su and Mr. Wang was primarily in providing

flap-lag response for comparisons. Mr. Hou, however, did all of the finite-element coding.

Results

The results of this work include trimmed and untrimmed cases, flap and flap-lag cases, and are

for both displacement and mixed formulations. The attached paper, to be presented at the AHS

International Specialists' meeting on Rotorcraft Basic Research, summarizes the results. In addition, an

oral presentation was given at the DAMUIBS workshop in September, 1990, at NASA Langley.
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ABSTRACT

We have studied finite elements in time as an alternative strategy for

rotorcraft trim problems. The research treats linear flap and linearized flap-

lag response both for quasi-trim and trim cases. The connection between

Fourier series analysis and hp-finite elements for periodic problem is also

examined. It. is proved that Fourier series is a special case of space-time

finite elements in which one element is used with a strong displacement for-

mulation. Comparisons are made with respect to accuracy among Fourier

analysis, displacement methods, and mixed methods over a variety param-

eters. The hp trade-off is studied for the periodic trim problem to provide

an optimum step size and order of polynomial for a given error criteria. It is

found that finite elements in time can outperform Fourier analysis for peri-

odic problems, and for some given error criteria. The mixed method provides

better results than does the displacement method.

I Graduate Research Assistant, School of Aerospace Engineering.

2Professor, School of Aerospace Engineering.
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INTRODUCTION

Finite elements in the time domain have recently come into widespread

use. Versions exist in a time-marching framework, in a Galerkin framework,

in a Rayleigh-Ritz framework, and in a mixed formulation. Furthermore,

recent hp work has demonstrated that the convergence of such methods is

highly enhanced when one uses a weak formulation with test functions chosen

so as to meet certain precise mathematical criteria on the continuity of the

bilinear operator [13]. Thus far, these fast-converging hp methods have only

been used on transient response (Floquent theory) [13] and on boundary-

value problems (in optimal control) [14]. In this paper, we use this method

on rotorcraft trim problems.

For hingeless rotorcraft dynamics, acroelastic motions of the rotor blades

and of the fuselage are coupled in forward flight thus makes the response

problem fairly difficult. Analyses of pitch-flap and pitch-flap-lag dynamics

in hover and flap dynamics in forward flight have been well documented [3]

[6] [10], and rotorcraft trim is usually one of the most difficult aspects of the

solution. In brief, to trim, one must find a periodic solution to a nonlinear,

periodic-coefficient, differential equation subject to side constraints that cer-

tain force and moment balance equations must sum to zero. There are certain

free (or trim) parameters in the problem that must be chosen so as to meet

these side constraints, but it is not easy to find either the periodic solution

or the unknown controls. Although conventional time-marching and Fourier

methods have been somewhat successful, they do not always converge.

Hamilton's law of varying action has been applied to time finite elements

[1] [2] [4]; recently, Borri et al [5] and Peters and Izadpanaph [13] provided
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a powerful alternative by using Hamilton's weak principle (HWP) to the nu-

merical solution of ordinary differential equations in the time domain. Here,

we apply Hamilton's weak principle for time finite elements to the problem

of rotorcraft trim and periodic response. The work begins with the question

of shape functions and compares the use of integrals of Legendre polynomi-

Ms as shape functions to the use of Fourier series; since the latter enforce

momentum periodicity (which is a natural boundary condition) they force

a strong rather weak formulation. However, we need to firmly establish the

connections between Fourier analysis and hp-finite elements for the periodic

case.

Second, the trim constraints are treated as formal side constraints in the

variational form of the problem. This turns out to be a benificial by-product

of the hp methodology - namely that the unknown controls can augment

the unknown coefficients in a formal way. In addition to the displacement

method, the mixed method is also implemented in which displacement and

momentum have seperate expansions. Finally, the inplane degrees of freedom

is added. In terms of numerical issues, the hp trade-off is investigated; and

the work herein will then show that how the hp trade-off is optimized for

both methods, as advantages are verified for accuracy and efFiciency.

• Linear Flap

For the linear flap problem, the equation of motion is derived for an

idealized model of a hingeless rotor rigid blade. Aerodynamic forces are

based on linear quasi-steady strip theory; small angle assumptions are made

for induced angles and for the flap angle. The induced inflow is assumed

to be uniform and is obtained from simple momentum theory. Also, the lift



curve slope a, and blade chord c are assumed constant along the blade.

The equation of motion for flapping can then be obtained from moment

equilibrium

+C(/)_ +K(/-)fl - F(/-) (1)

where

= 3' (1+4 sin/-)8

'7 4 u:_
= p2 + _(_# cos {+ sin2/)

= _[(#o+8. sin/'+0, cos/-)(1 +_#sin/'+#=-p2cos2/-)

-
• d

= ¢, = fit, ()=_()

FOURIER SERIES ANALYSIS

To implement a Fourier analysis, we express the flapping angle 3 in terms

of a harmonic series with Nh harmonics and the number of terms N - 2Nh + 1

N

"" _ _Pi(/-)qi
i=1

- ql + q2 cos t + q3 sin/' + q4 cos 2/' + qs sin 2/' + ...

We then apply Galerkin's scheme, multiply equation (1) by test functions _j,

which are also harmonics, and integrate. We then have

N 2_ _02__-" fo ('_' + C_, + K_i) qi_jd/' = F_j d/' j = 1,2, ... ,N (2)
i=l

Integration by parts and use the periodicity of the _i yields

N 2w L2 _E fO (_i_j -- C _i_j - h" _Oi_j) qid/' = - F_j d/' (3)
i=1



Now, we consider for comparison the alternate approach of using finite

elements in time by virture of Hamilton's strong principle

f0" f0"6 (T- V)dt+ SW,,cdt = 0

where

T = -_31", V = 2K/3 _, gI+I_¢ = (F- C_)63

(4)

for the current problem. Substitution of the above into equation (4) yields

- + - =C/36 )d F/3 0

Let,

N N

i=1 j=l

where the _i must be periodic, since equation (4) nlusl be true for arbitrary

6qj. We will then obtain equation {3) as deriverd from Fourier series. The

governing differential equation can also be recovered from equation (5) by

integration by parts and use of the periodicity property on momentum. Thus,

this proves that the Fourier series approach is a special case of finite elements

in time in which harmonics are used as trial and shape functions for onc

element.

For the quasi-trim problem, the co//ective and cyclic pitch angles are

given,/9 = 00 + 0c cos t'+/9, sin t, so as to suppress approximatly first harmonic

cyclic flapping, '3,,/3, _ 0. and thereby minimize rotor hub moments. For the

trim problem, the trim parameters 00, 0,, 0, are treated as unknown controls

to be found such that first harmonic flapping is identically zero.

The equations for these trim conditions, which can be taken as formal

side constraints, are

. 1 f0 _"_ /3dr = _o (6)



lfo"- _cos_d_ = 0 (7)

1 fo 2_"- _sin_'d_"= 0 (S)

Due to the orthogonality of triogonometric function, equations (7), (8)

yield for Fourier analysis

q2 = 0, q3 = 0

Equation (6) can also be replaced by an alternative form in which thrust is

specified

1 fo 2" Cr(_) d_ = Cro

where Cr(t) is obtained by blade element theory

fo abc "(zCT(L) = 2--_[ +/_sin_)_0 -- (z +/_sint)(A + =/3 + g/3cost)]dz

For the trim condition, the minimum order necessary for the Fourier series

approach is first harmonic cyclic flapping (ql, q2, q3); since with use of ql only

as a one-term approximation (i.e.,/3 =/3o), equations (7) (8) will be identi-

cally zero which results in a singular matrix. Physically, three polynomials

are required for Fourier series (Nh = 1) because of three trim constraints; and

the periodicity conditions are automatically satisfied. Similar requirement on

the number of polynomials in trim problem occurs in the displacement and

mixed methods, as will be discussed later. Table 1 summaries the number

of harmonics and required number of polynomials for the trim case. It is

noteworthy that the unknown trim parameters 00, 0, and/7, are included in

the aerodynamic force term F(t-) and should be moved to the left hand side

in the matrix formulation for solution.



DISPLACEMENT METHOD

For the displacement formulation, we start with Hamilton's law of varying

action

OL

_=1_-_6q,I,,"= 0 (9)

With a weak constraint of momentum [19], the Hamilton's weak principle (

primal or displacement form) is then

6 L at + 6w..et - _ 6q,.p, I',I= 0 (lO)
i=1

where the trailing term - _'=1 6qi.pl can be thought of as the virtual action

6A entering (or leaving) the time boundaries t; and t I. Thus, one might

interprete equation (10) as a variational statement of elasto-dynamics, "the

variation of the action plus the virtual action over the time interval ti < 0 <

t t plus the net virtual action across the time boundaries must sum to zero".

Before proceeding further in displacement development, we integrate equa-

tion (10) by parts for the linear flapping problem which yields

fo 2_r 2___(3 + c3 + x_- F)6_d_- (p- _)6_ Io_ o (11)

Obviously, for equation (11) to be valid for all 6_(_, the following equations

must hold.

_+c_+K_ = F (12)

po - /3(o) (13)

= _(T) (14)

The above relations imply that the governing differential equation and bound-

ary conditions for momenta are satisfied by equation (10). Even for a con-

servative system, initial value problems are n°t'self'adj°int and thus they do



not yield the minimum of a functional in the classical sense. However, the

variational statement is valid. One can think of Eq. (10 l as the time integral

of the virtual work where the virtual displacements at the boundary times

(_qi at ti and tj) may or may not be set to zero.

As shown in Ref. [16], certain geometric boundary conditions must be

satisfied for the admissable set of trial and test functions to have a stable

numerical formulation. For the trial functions, geometric boundary condition

on 8(0) or _(T), must be exactly satisfied. For the test functions 6B(0) or

5_(T) must be zero if either p0 or pr is unknown, respectively.

Eq. (11) can also be interpreted as the sum of the Galerkin weighted

residuals set equal to zero. For an approximate solution _, it can also be

interpreted as an error functional E(B, 6/3). From the concepts of finite ele-

ments, one can set E = 0 for some limited class of 6_. However, the error

functional is not bilinear if either p0 or pr is unknown. It follows that if

either p0 or pr is unknown, 6_(0) or 6_(T) must be set to zero to eliminate

the unknowns from the trailing terms. Thus, for boundary value problems,

if _(0) and pr are prescribed (p0 unknown) then we set 6_(0) = 0. On the

other hand, for initial value problems, if 8(0) and po are known but Fr un-

known, then we set /_(T) = 0 but /5_(0) =_ 0. If 6_(0) _ 0, then setting

E(_,6_) -- 0 ensures that p0 --_ _(0) which provides weak convergence to the

natural boundary condition. Similar arguments holds for other combinations

of end conditions.

For the periodic problem, _(0) = _(T)is a strong condition whereas

_(0) = _(T)is a weak condition enforced through p0 = pr which can be
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thought of as a Lagrange multiplier. Equation (10) can then be written as

fo_'(j_- c_6_-K_6_+ F6_)d_-_[6_(2_)-6_(0)]= 0 (15)

Since Ap is unknown, we must. set 6/3(2z') = 6/3(0) for a billnear formula-

tion. For numerical solution, we choose the integrals of Legendre polynomials

P._(z) as shape functions for _ and 6/3

N N

/9= E ¢I'j(_7)qi' 6/9= E ¢I',_(_)6qi (16)
j----1 i----1

where N is the number of terms in/9 or 6/3and

I-_ I+_
_i - _2 -

2' 2

%+, = __,(.)dz
1

(-1 ___ __1)

j = 2,3,...,N- 1

If the Lagrange multiplier is retained as an unknown (not bilinear), then

there is no constraint on 6/3 and we have N + 1 equations in N + 1 unknowns.

(Recall that the (N + 1) "t equation is the required constraint B(0) =/3(27r).)

However, if 6/3 is constrained, one equation is lost and _p is eliminated yield-

ing N equations in N unknowns.

• Momentum in the Displacement Method

Momentum in the displacement method can be obtained in three ways :

(i) Derivatives of displacements (or rotations)

N 1
P({,) _(_)= = ¢j-_q_ (17)

f

j=l

where() = _ =_ _ )' _ 1."_dn =;( 'and17= - -

(ii) Using Lagrange multiplier with derivatives of displacements involved

in integral formulation
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fo_'(F C_ K/3)Z_ (18)P(_I)= _P + - -

(fii) Using Lagrange multiplier without derivatives of displacements in-

volved in integral formulation

Integration of equation (18) by parts yields

for'(r K/3)dt (19)P61) = _ - c/3 [_'+ + ¢/3 -

The reason that equation (17) is not advisable, is that there is sensitivity

f

problem in convergence of derivatives of shape functions, #j, which may

occur in (i). By virture of the Lagrange multiplier, strategy (ii) (which

was used in Ref. [13]) improves the accuracy; and strategy (ifi), applied in

this work, gives the best results. As the number of elements and order of

polynomials increased, (ii) and (iii) approach the same results rapidly.

With multiple elements M having (N- 1) th order polynomials, the flap-

ping angle/3 is continuous between elements. This requires M - 1 constraint

equations, and the periodicity provides one more. This is balanced either by

M unknowns (which are the momenta at nodes) or by the M constraints on

6/3 required to eliminate those momenta. These nodal momenta can be ex-

tracted by discretization of the trailing terms of the displacement formulation

(15).

Trailingterms = _M[6/3(1)(0) -- 6/3(M)(2_r)]

M-1

+ _ ,x.,[6/3("+_)(_.,,+_)-6/3¢")(_.,,+1)](20)
rn_l

Thus, the ),,, can be retained or the 6/3 be restricted. The trim constraint

equations for multi-elements with (N - 1) th order polynomial are

X f_ q5-')¢, d, = o
m=l 1 j=l
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M 1 N

[ X" q(_)¢, sin{ d_ = 0

m=l d-1 j=l

(21)

M N Psin_#+ _" _sin21_j]&l

m=l 5=2

2, 3 2 --4CTo
---_-8o(1 + -_p )- #_rgo -- --Traa - A_r

where

1 + r//k[
= +

2_" 1 +,/27r (-1<,7<1)
= _(m-1)+ 2 M - -

Numerical difficulties arise in trim problems if too few terms are taken.

With a one element model, the number of polynomials has to be at least four

since we have three trim constraints and one periodicity constraint. With

multiple element modeling, additional periodicity constraints are required

between elements, thus the need is for more than four polynomials. The

relations between number of polynomials and required number of elements

are shown in Table 2.

MIXED METHOD

The momenta, like displacements, are treated as additional field variables

in the mixed method. The mixed formulation derived from Hamilton's weak

principle [5] is

ti'(SqTp -- 6_r q -- 6H + 6q T Q)dt = (_qYp - 6p r q)[tt_ (22)

where q denotes the set of generalized coordinates, Q the set of nonconser-

vative generalized forces applied to the system, L(q, _l,t) the Lagrangian of
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the system, p = 8L/a(? the set of generalized momenta, and H = pT(1 -- L

the Hamiltonian.

For the flapping problem,

1 ._ I . _2
L - _ -_

Q = F-C_

1 . fl_

p = _

The mixed formulation for the flapping problem is then

2_(6fl 6_ fl- _p- Kfl 6fl+ r 6fl- C _fl)d{P P P

(23)

where the variations of fl and p are independent, and all boundary conditions

are of the natural (or weak) type. Since the derivatives exist only in virtual

displacements 6fl and virtual momentum 6p, it is then possible to imple-

ment C Ocontinuous shape functions for the test functions and discontinuous

functions for the trial functions.

The C Oshape functions axe chosen to be hierarchical "bubble" functions

N-2

5p = 6p_(1 _)+6p_+(1 _)_Z6p, B,( )£, (0<_<1)
i=l

N-2

6fl _q_(1 _)+_q,_+(1-_)_Z_q,B, ( )],, (0<_<1)(24)
i----1

where B_(r) = G___(P,Q;r) are Jacobi polynomials. P, Q are parameters

and j_ the normalizing factor; and N is the number of terms in 6p or _fl.

The approximate values ofp and fl are taken as continuous function within

the element while allowing for distinct, discrete values on the boundaries of
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elements [15].

P

N-I N-I

= Z _J(_),
j--1 j----1

p = _, _ = A,

p = _, _ = _,_,

/3- _ qjaj(r) (0< r< I)

(_"= 0)

(r = I)

(25)

Note that there are N - 1 /_ terms and one unknown _ giving N unknown p

(or/3) terms. The 6/3 and 6p are assumed as free variations which exist even

when p and/3 are prescribed. Hodges and Hou [9] showed the derivation of

shape functions aj(r) and normalizing factors fi for mixed p-version finite

element.

Unlike in the displacement method, the trim functions/3, p are discontin-

uous between elements in the mixed method, while the test functions 6/5, 6p

are continuous between elements including the periodic connection. The rea-

son is to be found below.

First, we rewrite the trMling terms of the mixed formulation (21) for a

one-element model

(6/5 p - 6p/5) [_"= _,[6/5(2_r)- 6/5(0)] - A_[6p(2_r) - 6p(0)] (26)

where

Obviously, the continuityof 6/5and 6p isrequired to eliminatethe unknowns

_p, _/3at end of the period.

For hp finiteelements, the nodal momenta can be recovered by follow-

ing the same steps as equation (20) and by discretizing the time domain in
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trailing terms

M-1

M-1

-_')[@(_')(2_)- @(1)(0)]- Z _)[@1")(_+_)-@(_+_)(_+_)] (27)
n_=l

Thus, the nodal values A_"_),A(_'_)can then be found by solving equations

,.{,,_)_ (m} (i=1.2,... N-l).associated with independent coefficients oqi , op i . ,

The trim equations for the mixed method are

M IN-1 =Ira) f01
Z Z qJ _j.¢os_ d,

m=l J=l

Z Z qJ _. sin_ _,
m=l j----1

=0

= o (28)

qj _/_ sin 2[ a_ dr + _ p_ -_ + p sin t")ct¢d,
m=l ._=1 ._=1

27r 3 2 -4C:ro

where

2r 27r

- M(m-1)+r_ (0<r<l)

Again, there is a minimum requirement for the number of polynomials in

the mixed method trim problem. With Lagrange multiplier, the periodicity

constraints on generalized coordinates are enforced "implicitly"; thus, the

minimum polynomial number for trim is six for any number of dements

since there are two generalized coordinates, displacement and momentum.

This relation is depicted in Table 3.
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• Flap-Lag

We use the same model as in Ref. [8] for the flap-lag problem. The

schematical model is shown in Fig. 1. It consists of a centrally hinged rigid

blade, with flap and lag restraint springs to simulate the elastic coupling

characteristics of the actual blade. The spring stiffnesses are chosen so that

the uncoupled, rotating flap and lag natural frequencies coincide with the

corresponding first mode rotating natural frequencies of the elastic blade.

The effects of induced flow, blade equilibrium, and aerodynamic stiffness on

aerodynamic terms are retained. We farther assume that the drag coefficient

Ca0 is small with respect to the llft curve slope, and reversed flow is neglected.

The nonlinear equations of motion of this model are [7]

L+ sin_cos_(1 + _)' + (v - 1)(_- _,_) + z¢ = __ (29)

where sO0 and -_( are the nondimensional airloads perpendicular to the blade

and respectively in the flap and lead directions. The elastic terms approxi-

mated by small r, ( formulas [12] and small pitch angle assumption are

(3O)

For the linearized mode], we make small perturbations about a periodic

equilibrium motion of the nonlinear system. Denoting 0(_, _(f) and _(f)

as the equilibrium values of O, _ and _ and one can write the perturbation

expansions :

¢=_+6¢, _=_+6D, 0=0+0_6_+0(6( (31)

where

0 = eo+e.sinE+e_cosE+0_(_-t_)+ec¢
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and O_ and O( are pitch-flap and pitch-lag coupling parameters. Positive 08 or

0( implies that the blade pitches up due to positive flapping or lead inplane

motions.

Substituting Eq.(31) into the nonlinear equations (29), cancelling the

appropriate equilibrium terms and neglecting the higher order quantities

_, _, ;_2, #_, and _2 with respect to unity; we obtain the linearized equation

for flap-lag forced response :

6( }=

@

where

[c(_] =

_(I 4--_8_)

-2_(_+ _,_:_+_)
+_o(:+ _) -2_

I(__+ _._ +#)
-21o(:+ _,_{)+ 2_

iO(¢+_,ct#+ #)- 2##

(32)

(33)
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[g(_)]=

P

+i(_#ct +

-_e_(1 + _ + 2___)

Z 2/_ _ - 2 4-- -2_ct(_¢+_)

.,- 4 - 2_' s_c_)+i_(_#ct +

-4_,2c2_ + Re_(_- _)
•(_ -4).

+_(_.c_ + 2_2_}1

-3- 4"-

z ± i._t(_¢+J)_

W+}[2c_f_ct_+2_stct-)_

4"- --4 -.(}_+_)- _(_._t÷ 2_'_
-2_%K)

+/_( _tc_+ 2p 2,{ct")

+_(I + },s{)]

(34)
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[L(_)]

-](I+ _s_ :7. 4 -
-P - s(_ct + 2_%_c_

_(25+ _.c_+/_) _(3_#d+ 2#_c={f_)
-.:_(_#cE+ 2#_d_{)
-z - R(_- _])e_

(35)

_(_+ _#_{+ 2#_'{) -_(_ + ]#_{) ] (36)[M(t-)] = -_8(1 + _#s_ _ '-i(_¢). J

[N(_)] = [01 0 ] (37)• -_(1 + _ud + 2#_'{)

P-1 }
{O(_)} = (38)

z +R(_ -_)o_

Due to the nonlinear effects of flap-lag coupling for trimmed flight with

constant Cr, iterations for the solutions are required. To speed up the con-

vergence, formulas for 80, 8, and 8_ in Ref. [11] by harmonic balance can be

used as the first, guess.

ERROR ANALYSIS

The shape functions are integrals of Legendre polynomials, _(rt) for the

displacement method; and are Jacobi polynomials Bj(r) for the mixed method.

These polynomials can be related as follows

• _ = Cj (,/2_ 1) Bj__, j >_ 2 (-1 _< 7/< 1) (39)

where r = _ and C_ is constant.

In order to express the characteristics of shape functions; errors are mea-

sured at the zeros (roots) of shape functions. The roots of integral of Legen-

dre polynomials, for example, are more closely grouped near the endpoints.
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This indicatesthat the polynomials are able to oscillatewith increased fre-

quency near the endpoints, and are better suited for approximating singular

behavior which occurs at the endpoints than are trigonometric functions or

uniform h-versionmeshes. For trigonometric functions,the roots axe evenly

distributedin the interval-1 _<z _< 1 and they have the important property

that they "absorb" singulartiesat the finiteelement boundaries. Equation

(39) also indicatesthat the zeros of Jacobi polynomials and the integralsof

Legendre polynomials are equivalent. Table 4 and 5 show the number of

zeros and polynoinialorder in the mixed and displacement formulations.

The shape functions in the displacement method start with linearfunc-

tions (N = 2), since the order of the polynomial n -- N - I. We thus need

2 points in each element for error analysis,which would be the nodes of el-

ements. For N = 3, the quadratic polynomial needs an additional point to

measure errorwhich isthe zero ofnext higher order polynomial. By keeping

the statevariablesintheirprimative forms, the mixed method isable to start

with constant (N = 2 in Eq. (25)) for its shape function since the order of

polynomial n = N- 2. Following the same argument as in the displacement

method, the measured points for N th polynomial are the zeros of (N + 1)t_

order polynomial.

Denoted by Ed, E,,,the norm errorfor displacement and mixed methods

are defined seperatlyas

Ed =

V'n-1_*(")_= + Ej:2 (Pj..)]" ( ) }

E_ I ,, {(:,/_(,,,))_+ v.N ::,a("): + EN-c/,,p(.'_):l. :W:'_
E,__-_ _J=_, _'_ , + [(_(_))2 _:_, , , _ , ,,

" {(:)_2),+ ,-.N,_(..)_ E_=,(,,j._)]-( ) }E,,,:_ =J=_,,-'J,-,+ [(i_7)),+ N ¢")_ w
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where weight W = T/2_r; A_ I'_) is the error at node of rn th element, and

A_ "_) is the error at jth zero witch dement.

For line_ flap quasi-trim, trim and linearized flap-lag quasi-trim prob-

lems, essentially exact solutions can be obtained by Fourier series analysis.

Since the Fourier series approach is a special case of time finite dements

using one dement, Figures 2, 3 and 4 illustrate the convergence behaviors

of three approaches for quasi-trim and trim cases by single dement model-

ing. Fourier analysis obviously gives excellent accuracy with respect to the

number of floating point operations and CPU. Realizing that even the mixed

formulation has almost twice the number of unknowns as in the displacement

formulation and the Fourier analysis, and thus increase the number of oper-

ations and the size of the matrix; it yields a very sparse matrix which would

be significantly influence the computation efficiency as wiU be shown later.

With multi-dements modeling, Fig. 5 (in which number of dements

progresses as 1,2,4,8,16 and 32) compares the number of floating-point oper-

ations (see formulation in Ref. [13]) between the displacement method and

the Fourier analysis. It shows that the displacement method is not compet-

itive with classical Fourier analysis. Figures 6 through 9 compare the norm

error with regard to the number of degrees of freedom for quasi-trim aud

trim cases. Without consideration of computational efficiency, the Fourier

approach always gives the best results. However, the main objective here

is to obtain satisfying accuracy with highest efficiency (or minimum CPU).

In Figures 10-13, norm errors are plotted against CPU (on UNIX Sequent

$81 computer) for the linear flap problem; and Figures 14 - 17 are for lin-

earized flap-lag problem. Figures 10, 11 show that the mixed method is very

competitive with the Fourier approach and is faster than fhe displacement
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method for a specifiederror requirementfor the quasi-trim case. The advan-

tage of mixed formulation in computation efficiency becomes obvious for the

trim case as shown in Figures 12, 13. It is shown that at any given error

criteria or CPU, the mixed method provides an optimum choice of number

of elements and polynomial order (i.e., hp trade-off) due to the advantage of

matrix sparsity.

In general, 4 linear elements in the mixed method is appopriate for mod-

erate error criteria (1%), and 4 to 8 higher order elements for more stringent

error criteria. However, the hp trade-off is not obvious in the displacement

method, and the family of curves tends to converge with a slope of -5 to

-6. More precisely, the relation between the norm error and CPU in the

displacement method can be formulated as following

E2 CPU 5~e
(40)

In another words, for a factor of 10 improvement in accuracy, displace-

ment method needs 1.5 times the CPU; and a factor of 100 improvement

needs 2.5 times the CPU. Comparing both methods for the flap-lag problem

in Figures 14 - 17, we can see clearly that mixed method is much faster than

the displacement method for any given error criteria. Furthermore, the spar-

sity of matrix for mixed method has not yet been fully utilized, which will

increase the advantage of the mixed method.

CONCLUSIONS

Finite elements in time (FET) are applied on rotorcraft trim problems

in which Fourier series analysis, displacement and mixed methods are im-

plemented and verified for accuracy and efficiency. Examples include linear
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flap and linearized flap-lag problems. It is proved that Fourier series can be

thought of as a special case of finite elements in time, and the results also

show that the mixed method in FET can outperform conventional Fourier

analysis for rotor trim problems. The shape functions for different methods

are chosen according to the characteristics of associated formulations. Thus,

the integrals of Legendre polynomials are preferrable for the displacement

method while Jacobi ploynomials are preferrable for the mixed method.

The mixed method shows the advantage of efficiency at a given accuracy.

From hp trade-off analysis, it seems that 4 to 8 elements in the mixed method

provide best results for any order polynomial for any given error criteria,

while the hp trade-off is not sensitive in the displacement method, for which

all the curves have similar convergence behavior.
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Table 1. No. of Polynomials for Trim Using Fourier Series

Fourier Series

No. of /3 No. of Poly Req. Poly No.

Harmonics Nh = 2Nh + 1

0 1" 3

* singular matriz

A

v V

3

5 1 3

Table 2. No. of Polynomials for Trim Using Displacement Method

M

1

1

1

2

2

3

4

* singular rnairiz

N

Displacement Method

/3 No_ _'of Poly Req. Poly No.

= MN = M+3

_< 2" 4

--X_ 3" 4
4 -X'-"
2
3

2

2

4" 5

6 5

6 6

8 7
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Table 3. No. of Polynomials for Trim Using Mixed Method
Mized Methbd

M N

1 2

1 3

I 4

2 2

2 3

3 2

* sin#ular matrix

3 P No. of Poly

= 2M(N- 1)

11

6

Req. Poly No.

6

6

6

4" 6

8 6

6 6

Table 4. No.

N

2

3

5

of Zeros and

Description

Polynomial Order of Dis

No. of Zeros including

end points

Linear 2

Quadratic 3

Cubic 4

Quatric 5

)lacement Formulation

No. of Zeros

in intervals

0

1

2

3.

Table

N

2

3

4

5

6

No. of Zeros

Description

Constant

Linear

Quadratic

Cubic

Quatric

and Polynomial Order of
No. of Zeros including

end points

0

2

3

4

Mixed Formulation

No. of Zeros

in intervals

0

1

2

3

4
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Fig. 1 Centrally hinged, spring restrained, rigid blade representation.
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